Floquet理论是在19世纪末到20世纪初建立的,最早由Gaston Floquet在1883年的文章"Sur les équations différentielles linéaires à coefficients périodiques"提出,被用来解决周期性系数的微分方程的问题,Floquet给出了一种类似于Bloch解的形式。在20世纪中叶,Floquet理论被用在量子力学中的周期性驱动的系统中,我调查到的最早的有关Floquet说法的文章是1965年Shirley发表在Physical Review上的"Solution of the Schrödinger Equation with a Hamiltonian Periodic in Time"。此后,Floquet理论被应用在了许多领域,例如核磁共振(NMR)和激光物理。
[1] Oka, T., & Kitamura, S. (2019). Floquet engineering of quantum materials. Annual Review of Condensed Matter Physics, 10(1), 387–408. doi:10.1146/annurev-conmatphys-031218-013423
[2] Shirley, J. H. (1965). Solution of the Schrödinger equation with a Hamiltonian periodic in time. The Physical Review, 138(4B), B979–B987. doi:10.1103/physrev.138.b979
[3] Sambe, H. (1973). Steady states and quasienergies of a quantum-mechanical system in an oscillating field. Physical Review A: General Physics, 7(6), 2203–2213. doi:10.1103/physreva.7.2203
[4] Thouless, D. J. (1983). Quantization of particle transport. Physical Review. B, Condensed Matter, 27(10), 6083–6087. doi:10.1103/physrevb.27.6083
[5] Rice, M. J., & Mele, E. J. (1982). Elementary excitations of a linearly conjugated diatomic polymer. Physical Review Letters, 49(19), 1455–1459. doi:10.1103/physrevlett.49.1455
[6] Kitagawa, T., Berg, E., Rudner, M., & Demler, E. (2010). Topological characterization of periodically driven quantum systems. Physical Review. B, Condensed Matter and Materials Physics, 82(23). doi:10.1103/physrevb.82.235114
[7] Thouless, D. J., Kohmoto, M., Nightingale, M. P., & den Nijs, M. (1982). Quantized hall conductance in a two-dimensional periodic potential. Physical Review Letters, 49(6), 405–408. doi:10.1103/physrevlett.49.405
[8] Bukov, M., D’Alessio, L., & Polkovnikov, A. (2015). Universal high-frequency behavior of periodically driven systems: from dynamical stabilization to Floquet engineering. Advances in Physics, 64(2), 139–226. doi:10.1080/00018732.2015.1055918
[9] Eckardt, A., & Anisimovas, E. (2015). High-frequency approximation for periodically driven quantum systems from a Floquet-space perspective. New Journal of Physics, 17(9), 093039. doi:10.1088/1367-2630/17/9/093039
[10] Mikami, T., Kitamura, S., Yasuda, K., Tsuji, N., Oka, T., & Aoki, H. (2016). Brillouin-Wigner theory for high-frequency expansion in periodically driven systems: Application to Floquet topological insulators. Physical Review. B, 93(14). doi:10.1103/physrevb.93.144307
[11] Casas, F., Oteo, J. A., & Ros, J. (2001). Floquet theory: exponential perturbative treatment. Journal of Physics A: Mathematical and General, 34(16), 3379–3388. doi:10.1088/0305-4470/34/16/305
[12] Mananga, E. S., & Charpentier, T. (2011). Introduction of the Floquet-Magnus expansion in solid-state nuclear magnetic resonance spectroscopy. The Journal of Chemical Physics, 135(4), 044109. doi:10.1063/1.3610943
[13] Oka, T., & Aoki, H. (2009). Photovoltaic Hall effect in graphene. Physical Review. B, Condensed Matter and Materials Physics, 79(8). doi:10.1103/physrevb.79.081406
[14] Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S., & Geim, A. K. (2009). The electronic properties of graphene. Reviews of Modern Physics, 81(1), 109–162. doi:10.1103/revmodphys.81.109
[15] Kitagawa, T., Oka, T., Brataas, A., Fu, L., & Demler, E. (2011). Transport properties of nonequilibrium systems under the application of light: Photoinduced quantum Hall insulators without Landau levels. Physical Review. B, Condensed Matter and Materials Physics, 84(23). doi:10.1103/physrevb.84.235108
[16] Kitagawa, T., Berg, E., Rudner, M., & Demler, E. (2010). Topological characterization of periodically driven quantum systems. Physical Review. B, Condensed Matter and Materials Physics, 82(23). doi:10.1103/physrevb.82.235114
[17] Lindner, N. H., Refael, G., & Galitski, V. (2011). Floquet topological insulator in semiconductor quantum wells. Nature Physics, 7(6), 490–495. doi:10.1038/nphys1926
[18] Haldane, F. D. (1988). Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the ‘parity anomaly’. Physical Review Letters, 61(18), 2015–2018. doi:10.1103/PhysRevLett.61.2015